Regulation of COP1 nuclear localization by the COP9 signalosome via direct interaction with CSN1.

نویسندگان

  • Xiping Wang
  • Wenjun Li
  • Raquel Piqueras
  • Kaiming Cao
  • Xing Wang Deng
  • Ning Wei
چکیده

COP1 and COP9 signalosome (CSN) are key regulators of plant light responses and development. Deficiency in either COP1 or CSN causes a constitutive photomorphogenic phenotype. Through coordinated actions of nuclear- and cytoplasmic-localization signals, COP1 can respond to light signals by differentially partitions between nuclear and cytoplasmic compartments. Previous genetic analysis in Arabidopsis indicated that the nuclear localization of COP1 requires CSN, an eight-subunit heteromeric complex. However the mechanism underlying the functional relationship between COP1 and CSN is unknown. We report here that COP1 weakly associates with CSN in vivo. Furthermore, we report on the direct interaction involving the coiled-coil domain of COP1 and the N-terminal domain of the CSN1 subunit. In onion epidermal cells, expression of CSN1 can stimulate nuclear localization of GUS-COP1, and the N-terminal domain of CSN1 is necessary and sufficient for this function. Moreover, CSN1-induced COP1 nuclear localization requires the nuclear-localization sequences of COP1, as well as its coiled-coil domain, which contains both the cytoplasmic localization sequences and the CSN1 interacting domain. We also provide genetic evidence that the CSN1 N-terminal domain is specifically required for COP1 nuclear localization in Arabidopsis hypocotyl cells. This study advances our understanding of COP1 localization, and the molecular interactions between COP1 and CSN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure and versatile functional roles of the COP9 signalosome subunit 1.

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) plays key roles in many biological processes, such as repression of photomorphogenesis in plants and protein subcellular localization, DNA-damage response, and NF-κB activation in mammals. It is an evolutionarily conserved eight-protein complex with subunits CSN1 to CSN8 named following the descending order of molecular weights. Her...

متن کامل

The subunit 1 of the COP9 signalosome suppresses gene expression through its N-terminal domain and incorporates into the complex through the PCI domain.

The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected structure and function of the subunit...

متن کامل

The COP9/signalosome complex is conserved in fission yeast and has a role in S phase

The COP9/signalosome complex is conserved from plant to mammalian cells. In Arabidopsis, it regulates the nuclear abundance of COP1, a transcriptional repressor of photomorphogenic development [1] [2]. All COP (constitutive photomorphogenesis) mutants inappropriately express genes that are normally repressed in the dark. Eight subunits (Sgn1-Sgn8) of the homologous mammalian complex have been p...

متن کامل

TSA1 interacts with CSN1/CSN and may be functionally involved in Arabidopsis seedling development in darkness.

The COP9 signalosome (CSN) is a multiprotein complex which participates in diverse cellular and developmental processes. CSN1, one of the subunits of CSN, is essential for assembly of the multiprotein complex via PCI (proteasome, COP9 signalosome and initiation factor 3) domain in the C-terminal half of CSN1. However, the role of the N-terminal domain (NTD) of CSN1, which is critical for the fu...

متن کامل

Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis.

A group of evolutionarily conserved pleiotropic COP/DET/FUS proteins was initially defined by their ability to repress photomorphogenesis in Arabidopsis. It was proposed that this regulation be mediated by targeting degradation of key cellular regulators that promote photomorphogenesis. Among them, COP1 and the COP9 signalosome have been hypothesized to fulfill the roles as an ubiquitin ligase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 58 4  شماره 

صفحات  -

تاریخ انتشار 2009